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1. Introduction 

The temporary help industry has grown rapidly over the last quarter century.  

Indeed. the industry’s share of nonfarm employment has risen to nearly 2% from a base 

of less than 0.5% in the early 1980s. This growth has attracted much researcher on 

various topics surrounding temporary workers (Autor, 2003; Houseman, 2001; Sullivan 

and Segal, 1995, 1997; and etc.). However, there are few empirical studies examining 

firms’ use of temporary workers as a way to accommodate fluctuations in production – 

one of the important roles that the temporary employment is believed to play. 

Golden (1996) and Segal and Sullivan (1997) are two of the few papers 

examining such a topic based on macro economic data. Campbell and Fisher (2004) 

presents a theoretical model describing a firm’s decision to adjust temporary and 

permanent workers and compare their calibration with aggregate level observations. 

There are only a few micro-data based empirical studies examining the relationship 

between the use of temporary workers and a firm’s production volatility (Houseman, 

2001).  

One reason for the scarcity of empirical studies has been limited data. Even 

among confidential micro Census data sources such as the Annual Survey of 
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Manufactures and the Census of Manufactures, it is rare that a survey collects data on the 

usage of temporary workers by business establishments. Such data limitations have 

prevented researchers from learning very much about the characteristics of firms that use 

temporary workers. As a result, most micro-level analyses of temporary workers have 

focused on demographic aspects of the topics (such as wage differentials between 

temporary and permanent workers, etc.) using data such as Current Population Survey. In 

such demographic data, information on firms where temps work is typically limited to 

only industrial category.   

 In this paper, we use plant-level data from the Plant Capacity Utilization (PCU) 

Survey ,which is conducted annually by the Census Bureau. These data are used by the 

Federal Reserve Board to produce estimates of capacity utilization rates for 

manufacturing and publishing industries. In 1998 the survey began collecting information 

of the number of temporary workers utilized by plants in the survey. However, thus far, 

only 1998 and 1999 micro-level data are available. Taking advantage of these newly 

available data, we examine how a plant’s temporary worker share is associated with the 

plant’s output fluctuations. In particular, we focus on the relationship between a plant’s 

temporary worker share and the deviation of realized output from trend or expected 

output as well as the magnitude of plants’ typical fluctuations. When a firm experiences 

an increase in demand, to the extent that it is expected to be temporary, the firm may be 

reluctant to hire additional permanent workers because of the costly process of firing 

such workers. In such situations, firms may rely on temporary workers to meet current 

employment needs. In addition, as we will see in Section 2, if firing costs are sufficiently 

high, greater dispersion in the distribution of output leads the firm to cap the number of 

perms at a lower level, and thus hire more temps. In our statistical analyses, we also 

control for plant characteristics such as plant size, age, industry.  

Note that while micro-level studies examining firms’ use of temporary workers 

are new, there are several micro-level studies on topics closely related to that of this 

paper. As an example, using plant-level data, Copeland and Hall (2005) examines how 

automakers accommodate shocks to demand by adjusting price, inventories, and labor 

inputs through temporary layoffs and overtime. Such factors are considered to be closely 
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linked to a firm’s decision to adjust temporary worker share. We intend to examine such 

interactions in future work. 

In Section 2, we outline a model that motivates our empirical specification. In 

Section 3, we describe our data in more detail, and in Section 4, we discuss empirical 

implementation. In Section 5, we present our empirical results. 

 

2. Model 

In this section we discuss a stylized model of a plant’s choice of temp worker 

share that is intended to help motivate and guide our empirical work.  The model 

emphasizes the role of temporary services workers in accommodating fluctuations in 

output without increasing future costs associated with layoffs of regular employees. 

Specifically, the model assumes that labor is the only factor of production and that 

in each period, the plant manager must hire an appropriate quantity of labor services, te , 

to meet an exogenously determined level of output, ( )t ty f e= , where f is a standard, 

strictly-increasing production function.  The required labor input can come from a 

combination of regular, or “perm,” employees, tp , and agency “temps,” ta , with the total 

quantity of labor services given by t t te p aθ= + , where θ  is a positive constant.  The 

wage rates for perms and temps are pw  and aw , respectively.  In addition, the plant incurs 

firing costs of δ  for each perm worker that is laid off.  Thus, the plant’s total costs in a 

period are 1max( ,0)p t a t t tw p w a p pδ −+ + − .  We assume that future levels of output are 

uncertain and that the firm minimizes the expected present value of costs given a discount 

factor, 1/(1 )rβ = + . 

Let the unit labor costs associated with hiring perms and temps be, respectively, 

p pu w= and /a au w θ= .  We assume that 0a pu u uΔ = − > .  That is, absent firing costs, 

temp workers would be more expensive to employ, either because their wage rate is 

higher ( a pw w> ), they are less productive ( 1θ < ), or both.  We further assume that the 

cost of firing a perm is greater than the (discounted) difference in unit labor costs, but 

less than a full period’s wage, / pu wβ δΔ < < .  If u βδΔ > , then the plant will never 

want to hire any temps; it will be cheaper to use perms even if it is certain that they will 
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be laid off next period.  The condition that pwδ < is a convenient simplification that 

implies that the firm will not keep any idle workers on the payroll; keeping an idle 

worker on the payroll costs more than laying him off in the current period and may also 

increase layoff costs in the future. With this configuration of costs, the plant faces a 

tradeoff between using more perms, which lowers current wage costs versus using more 

temps, which may lower future firing costs. 

 

Two Period Case 

It is easiest to see logic of the model when there are only two periods.  In this 

case, the plant is unconcerned about future firing costs in the last period.  Thus it meets 

its entire labor need with permanent workers, 1
2 2( )p f y−= , incurring costs 

1 1
2 2 1 2( ) max(0, ( ))pC w f y p f yδ− −= + − . 

 The plant’s choice is less trivial in the first period.  Specifically, given 1y and 

knowledge of the distribution of 2y , the firm chooses 1p and 1a to minimize total expected 

discounted costs taking into account how they will behave in the second period.  Those 

total costs are 1 1
1 1 2 1 2[ ( ) max(0, ( ))]p a pTC w p w a E w f y p f yβ δ− −= + + + − .  In order to 

meet the required level of production, 1
1 1 1( )f y p aθ− = + .  Using the latter constraint, costs 

can be written as a function of 1p  alone, 

1 1 1
1 1 1 2 1 2( ( ) ) [ ( ) max(0, ( ))]p a pTC u p u f y p E w f y p f yβ δ− − −= + − + + − . 

Thus, 1
1 1 2

1 1

( ) [max(0, ( )]dTC dp u E p f y
dp dp

βδ −= −Δ + − . 

Assume that the distribution of second period output is continuous with density 

2( )g y and distribution function 2( )G y .  Then the expected number of layoffs in the 

second period given that 1p perms were hired in the first period is 

1( ) 1
1 1 2 2 20

( ) ( ( )) ( )
f p

L p p f y g y dy−= −∫ . Thus, 

1( )1
1 1 1 1 2 2 10

( ) ( ( ( )) ( ( )) (1) ( ) ( ( ))
f p

L p p f f p g f p g y dy G f p−′ = − + =∫ , which implies that 
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1 1
1

( ) ( ( ))dTC p u G f p
dp

βδ= −Δ + .  That is, increasing the number of perms by one (and 

thus lowering the number of temps by 1/θ ) lowers costs in the current period by the 

difference between temp and perm unit costs ( uΔ ), but raises expected firing costs in the 

second period by the product of the cost of firing a worker (δ ) and the probability that 

the marginal worker will need to be fired ( ( ( ))G f p ). 

( )G y and ( )f p are increasing functions.  Thus, 1
1

( )dTC p
dp

is also increasing. 

Moreover, 
1

(0) 0dTC u
dp

= −Δ <  and 
1

1
1

lim ( ) 0
p

dTC p u
dp

βδ
→∞

= −Δ + > . Thus there is a unique 

level of perms, p , such that 
1

( ) ( ( )) 0dTC p u G f p
dp

βδ= −Δ + = .  See the top panel of 

Figure 1 for an illustration of the case in which the distribution of 1y is uniformly 

distributed on the interval from loy to hiy  and ( )f e is linear.  

On the one hand, if 1
1( )f y p− < , then total expected discounted costs are 

decreasing in the number of perms all the way up to the value that completely satisfies 

the plant’s employment need.  Thus, in this case, the optimal number of perms is 
1

1( )f y− and the optimal number of temps is zero.  On the other hand, if 1
1( )f y p− > , then 

total expected discounted costs fall with 1p  until 1p p= , and then begin to rise.  Thus 

the optimal number of perms is p and the optimal number of temps is 1
1( ( ) ) /f y p θ− − , 

the number necessary to meet the remaining necessary level of labor services.  We can 

summarize the solution by writing the optimal numbers of first period perms and temps 

as * 1
1 1min( ( ), )p f y p−=  and * 1 *

1 1 1( ( ) ) /a f y p θ−= −  where p satisfies ( ( ))G f p uβδ = Δ . 

In words, the plant hires perms up to a maximum value at which the expected discounted 

firing costs of hiring an additional perm are equal to the extra current wage costs of 

substituting an equivalent number of temps. 

 

Lognormal Output Levels and Power Production Function 
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 Suppose the distribution of 2y  is lognormal, 2
2log ( , )y N μ σ∼  and the production 

function takes the power form, ( )f e Aeα= .  Then, the equation characterizing 

p is log log( ( )) ( )A pu G f p α μβδ βδ
σ

+ −
Δ = = Φ , where ( )xΦ is the standard normal 

distribution function, and μ and 2σ are the mean and variance of the log of the output 

distribution.  Alternatively, 1 1log [ log ( )]up Aα μ σ
βδ

− − Δ
= − + Φ .  Because α and σ are 

positive constants and 1( )p−Φ is an increasing function, a higher value of the gap 

between temp and perm unit wage costs, uΔ , increases the maximum perm employment 

level, leading to the use of fewer temps.  On the other hand, a higher value of the firing 

cost, δ , lowers the cap on perm workers, leading to the employment of more temps. The 

impact of the dispersion parameter, σ , on the maximum number of perms depends on the 

ratio of the gap between unit wage costs and firing costs.  If firing costs are sufficiently 

high that 1
2

u βδΔ < , then 1( ) 0u
βδ

− Δ
Φ < and greater dispersion in the distribution of 

log ty will lead the plant to cap the number of perms at a lower level and, thus, hire more 

temps for a given level of output.  The opposite is true if 1
2

u βδΔ > .  

That an increase in the uncertainty measure,σ , could lead to the use of fewer 

temps is, perhaps, somewhat counter intuitive.  However, when firing costs are low, the 

plant will worry little about layoffs.  As a result, it will hire so many perms that the 

probability of needing to lay off the last one will be greater than one half.  Increasing the 

uncertainty in the number of workers needed in period 2 will move the probability closer 

to one half, which represents a decrease in the probability of needing to fire the marginal 

worker.  This decline in marginal expected firing costs gives the plant the incentive to 

higher more perms.  When firing costs are high, the effect of uncertainty works the other 

way.  The fact that firing costs are high implies that the plant will keep the probability 

that the marginal worker needs to be laid off less than one half.  Increasing uncertainty 

again leads to the probability moving closer to one half, but in this case, the probability 
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increases.  The increased probability that the marginal worker will need to be laid off in 

turn causes the plant to use fewer perms and more temps to produce the given output. 

Note also that given the functional forms assumed in this section, the plant will 

hire a positive number of temps if 1 1/( ) ( / )f y y A pα− = > .  This is equivalent to 

1log log ( )y A p uμ μ σ
σ σ βδ

−− − + Δ
> = Φ , which happens with probability1 u

βδ
Δ

− . 

 

IID Output Levels 

If the plant’s horizon is infinite, but the exogenous levels of required outputs over 

time are i.i.d. random variables, then we show in the appendix that the plant’s optimal 

policy is essentially identical to that just derived for the first period of the two period 

model.2  The intuition is that given future optimal behavior, the choice of tp at time t  

will determine the number of perms laid off at time 1t + . However, subsequent layoffs 

will depend on the independent choice of 1tp + , 2tp + , etc. and not tp .  Thus in considering 

the optimal choice of perms at time t , future firing cost considerations are identical to 

those in the first period of the two period model.  That is, the marginal expected 

discounted firing cost associated with an increase in tp  is ( ( ))tG f pβδ .  Given that the 

plant is starting with a level of perms, 1tp p− < , from the previous period, the marginal 

change in expected costs from employing an additional perm differs slightly from the two 

period case.  This is because, if 1t tp p −< , then increasing tp  saves on firing costs in the 

current period.3  Thus, in the i.i.d. case, 1( ) [ ] ( ( ))t t t t
t

dTC p u I p p G f p
dp

δ βδ−= −Δ − < + , 

where 1[ ]t tI p p −< is an indicator function for 1t tp p −< .  This function has a discrete jump 

                                                           
2 The only qualification is that the plant must start with a level of perms that is less than or equal to p , the 
cap derived in the last section.  As long as this is the case, it will be optimal to follow the rule that 

* 1min( ( ), )t tp f y p−= .  If this was not the case, that is, the plant started with 1tp p− > , then it is 

possible for it to be optimal to choose tp p> .  However, once a realization of the ty  comes in below 

( )f p , the rule * 1min( ( ), )t tp f y p−= becomes optimal for the rest of time. 
3 In the two period case, we implicitly assumed that the plant started the first period with no perms.  Thus it 
did not have to consider the effect of its decision on the number of perms laid off in the first period. 
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at 1t tp p −= .  However, it is still strictly increasing and given that 1tp p− < , it still is equal 

to zero at tp p= .  See the bottom panel of Figure 1. 

 

Implications for Empirical Strategy 

In the empirical section, we analyze the cross sectional determinants of the usage 

of temp workers.  The simple model sketched here suggests that one important 

determinant will be the level of current output relative to the expectation of future output.  

When output levels are high relative to what is expected in the future, the model suggests 

that firms will tend to use more temps in order to avoid firing costs.  We also look at the 

effects of cross-plant variation in the uncertainty of future output.  The model says that, 

in principle, higher uncertainty could either increase or decrease the usage of temp 

workers.  In the empirical work we control for industry as well as characteristics such as 

plant size and age that may proxy for variation in the level of firing costs and temp wage 

differentials that the model says should also influence the usage of temps.  

 

3. Data  

The main data set for this study is the survey of Plant Capacity Utilization (PCU), 

which is used by the Federal Reserve Board to estimate capacity utilization rates of 

manufacturing and publishing plants.4 In addition to variables related to plants’ operation 

status and capacity utilization, the survey collects data on work patterns by shift, 

including production worker numbers and hours worked as well as overtime hours. Such 

information is provided for each of the shifts that a plant operates during the fourth 

quarter of each year. Since 1998, the survey has collected temporary production worker 

number and hours worked, key variables in our study. Currently the 1998 and 1999 PCUs 

are available for this study.  

While approximately 17,000 plants are surveyed each year, many plants are out of 

our focus or do not respond to the key items for our study. In particular, in our empirical 

work, we include only manufacturing plants that are in operation and that provide valid 

answers for key employment variables including the number of temporary production 

workers. We also exclude plants that reported inconsistent responses for key variables. 
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Among them, we further select plants, for which we can calculate measures of the level 

and volatility of production. As we describe below, we calculate such measures using 

annual output data from Annual Survey of Manufactures (ASM) and Census of 

Manufactures (CM).  Thus, our sample is limited to the plants which previously appeared 

in the ASM-CM panel for at least a certain number of years. Combining both years of 

available PCUs leaves us with about 5,500 plants. Appendix A.1 provides more details 

about which plants are included in our sample.  Compared to the full 1997 CM, plants in 

our PCU sample are much older and larger in terms of both output and employment. 

While the PCU provides employment and hour data for each shift, examining the 

allocation of perm and temp workers between different shifts is beyond the scope of this 

paper. In what follows, we focus on a plant’s overall use of temporary workers for all 

shifts in total.  In our sample, the fraction of plants employing a positive number of 

temporary production workers in a particular year is about 40%. The remaining 60% of 

plants operate without using any temporary workers. This is consistent with our stylized 

model, which predicted that when output is below a certain threshold, a plant uses only 

permanent workers.  

 

4. Empirical Implementation 

In the model, we outline how a plant’s usage of temporary workers is associated 

with the difference between its current and expected future production levels, which we 

denote by d , as well as the average uncertainty associated with its production level, 

which we denote by σ . To test the relationship between these variables, we first estimate 

probit models that relate a plant’s likelihood of using temporary workers in a given 

period to its characteristics. More specifically, let us denote the net benefit for a plant of 

hiring temps by *
itZ .  

* ( , , )it it i it itZ d X uσ= +λ , (1) 

where itd is the deviation of a plant’s actual output from the future output, and iσ  is the 

average level of uncertainty of the plant, itX is a vector of other control variables, 

                                                                                                                                                                             
4 http://www.census.gov/econ/overview/ma0500.html (August, 2006) 
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including plant age and age squared,5 2-digit SIC industry dummies, and a survey year 

dummy. Assuming that a plant hires temporary workers when * 0itZ > , we estimate (1) by 

maximum likelihood.  

We also estimated tobit models that utilize information on the share of temporary 

workers. In our sample, among plants with some temps, the distribution of temporary 

worker shares has a mean of about 10%, but is heavily skewed toward to the left. In order 

to avoid such skewness, we calculate log( )
1

TempShareS
TempShare

≡
−

. This transformed variable 

has a much more symmetric distribution, making it more appropriate for use as a 

dependent variable in the tobit analyses. Analogously to the probit models, we estimate;  

( , , )it it i it itS d X uσ= +λ , (2) 

where itS is censored at the value with the smallest positive temp share for those plants 

without any temp. 

 

Measure for d and σ  

Data 

To measure d , the deviation from the future output level andσ , the uncertainty for each 

plant, we use the time series data of plant total value of sales (TVS) from Annual Survey 

of Manufactures (ASM) and Census of Manufactures (CM). The CM is a population 

survey and is conducted every five years. In contrast, the ASM is a sample survey and is 

conducted annually.6 We observe the TVS of all manufacturing plants in a Census year as 

long as they exist, but in off-Census years, we only observe the TVS of plants sampled 

for the ASM.  Using a plant identification number, which is given based on a physical 

location of the plant, we create ASM-CM plant-level unbalanced panel data. Note that, to 

use a consistent plant identifier, we limit ourselves to the ASM and CM observations 

                                                           
5 Plant age is calculated based on the variable “firstyear” in the LBD, which is essentially the first year that 
a plant is found in linking the plant time series data for the LBD. While LBD starts from 1976, “firstyear in 
the LBD distinguish plants that appear in 1976 and those appeared before 1976; the earliest year we can 
track a plant back from the LBD is 1975. 
6 The ASM is performed as a part of CM in the Census year. Plants in ASM samples are asked to fill a 
longer questionnaire. 
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from 1976 and after.7 We focus on real TVS values by employing the TVS deflator for 

each of 4-digit SIC calculated by Bartelsman, Becker, and Gray.8 

Unfortunately, monthly and quarterly series on plant level TVS are not available 

in the ASM or CM. Thus we analyze output fluctuations at the annual frequency. This 

makes it impossible to analyze the need for seasonal temporary workers.   

Note also that for establishments with employees, we can observe their annual 

employment in the LBD. However, the LBD does not provide TVS. In addition, like 

many other surveys, the employment in the LBD data is employment on payroll (i.e. 

permanent employment) and does not include workers employed by temporary service 

firms. To the extent that a plant uses temporary workers to accommodate output 

fluctuations, variation in permanent employment would under represent output 

fluctuation. Any unobserved or uncontrolled factors that increase a plant’s use of 

temporary workers may be translated into the lower level of the plant’s permanent 

employment fluctuation. Thus, in this paper, we use TVS data to capture output 

fluctuation. 

 

Measure 

To capture d  and σ , we estimate three models for expected output using the ASM-CM 

panel. As a measure of the degree of uncertainty, we use the standard deviation of the 

residual from the model, assuming that the average uncertainty level that a plant has 

experienced remains in future. As we discuss in more detail below, we also decompose 

d into two components. One is the deviation of the realized output from its expected level 

of the year, which we denote by d ; this can also be considered as shock or surprise in 

output relative to expectations. The other is a factor summarizing the expected/trend 

growth rate. It may be instructive to see how these components are separately related to a 

plant’s temp share. 

                                                           
7 As a plant identifier, we use LBD number, which is a revised version of Permanent Plant Number (PPN) 
used in much research on manufacturing data base such as Longitudinal Research Data (LRD). Like PPN, 
the LBD number does not change at the event of merger and acquisition and is specific to a plant physical 
location. LBD number is created as a part of the effort for a Census to create the LBD, which review and 
update the longitudinal linkage as well as the operation status of the establishments/plants in the SSEL.  
While the Census of Manufacturing goes back to 1963, the LBD starts from 1976. 
8 The data sets for the deflators through 1991 are posted at http://www.nber.org/nberces/nbprod96.htm. We 
thank Randy Becker for letting us use the preliminary version of the TVS deflators for the later period. 
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 First (Model 1), we use a simple mean of the log TVS in the ASM-CM data as the 

expected output. In this case, d  is simply the deviation of value for the year from its 

average and can also be considered as shock; it itd d= . iσ is just the standard deviation of 

log TVS. If plant’s production levels are i.i.d. random variables, these measures 

adequately reflect the long-run level and volatility of the plant’s output.  

However, there are some obvious reasons to question the adequacy of such 

measures. First, the data are unbalanced, with plants being observed in different sets of 

years.  Because years differ in their volatility, we also estimated models including a 

measure of the state of the macroeconomy in the particular periods that a plant is 

included in the sample.  The resulting measure of iσ should be purged of these sample 

year effects. In addition, it is possible that plant output may not be i.i.d., and there might 

be factors, such as age, which is systematically associated with a plant’s output level. 

Since we do not observe TVS for all the years that a plant exists, the simple mean of TVS 

observed in our sample would depend on where in a life cycle the plant is when it is 

included to the sample. Considering these issues, we estimate the following specification 

(Model 2); 

it i i t itltvs T nα β γ ε= + + + ,  (3) 

where itltvs is log TVS of plant i in year t. T captures a plant specific time trend that 

absorbs any linear effect of plant age, and tn is a macroeconomic variable that captures 

business cycle. As tn , we use the deviation of log real GDP from log potential GDP 

provided by the CBO. Note that in this model, expected future output depends on 

expectations of tn . However, tnγ is common across plants and thus does not affect 

relative expectations across plants. Thus we simply use the realized value for tn  in 

calculating the expected outputs. iσ  is the standard deviation of the error terms and does 

not reflect a particular period or a particular part of a plant’s life cycle that the plant 

appears in the ASM-CM sample.  

 Note that in this specification, unlike Model 1, the expected output changes over 

time, and the deviation of output from the expected future level is no longer the same as 
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the deviation of the current level from previous expectations. More specifically,  we can 

write 

[ ]
{ [ ]} { [ ] [ ]}

it it it

it it it it

d ltvs E ltvs
ltvs E ltvs E ltvs E ltvs

′

′

≡ −
= − − −

  

where itltvs ′ is log TVS in future period t′ . The term in the first bracket is the deviation 

from the output level expected for the current period, d . To the extent that a plant’s 

current output level exceeds from the trend or what is expected, we expect the plant to be 

more likely to hire temporary workers and have greater temporary worker share. If a 

plant finds the current output level below trend or expected levels and decides to lower 

the level of labor, it would layoff temps before it dismisses permanent workers. The term 

in the second bracket represents the expected growth rate, and under the specification in 

(3), it is equal to iβ . If firing costs are an important consideration and fast growing plants 

are less likely to need to layoff workers in the future, one might expect faster growing 

plants to hire a lower share of temp workers. In our empirical examination, we include 

shock ( d ) and trend growth ( iβ ) separately.9  

 Next, we estimate a more elaborate model (Model 3) in which a plant forms its 

expectation of its future growth rate based on the current realized growth rate. We also 

control for age effects in a quadratic form. We again control for the change in 

macroeconomic conditions. Denoting the growth rate of TVS (the change in the log of 

TVS) by gtvs , we estimate; 

2
1 ( , , )it i i it it it t itgtvs gtvs age age dnβ ρ υ−= + + +γ , (4) 

where 1t t tdn n n −≡ − . Unlike Model 2, here, a plant uses the past realized output level to 

form its expectation for the future output level. Moreover, any uncertainty is what a plant 

could not foresee based on the previous year’s information. In a sense, here, we implicitly 

assume that a plant sets the permanent employment level based on its expectation on the 

next year output that is based on the current realized output level. Thus, we write; 

                                                           
9 More specifically, we can write [ ] [ ] ( ) ( )it it i t tE ltvs E ltvs t t n nβ γ′ ′′− = − + − . However, only 

iβ varies across plants. Thus, relative differences in average growth rates are essentially summarized by 

iβ . 
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, 1

1 , 1 1

[ ]
{ [ ]} { [ ] [ ]}

it it t i t

it t it t i t t it

d ltvs E ltvs
ltvs E ltvs E ltvs E ltvs

+

− + −

≡ −

= − − −
 

where 1 1 1[ ] [ ]t it it t itE ltvs ltvs E gtvs− − −= + .  

The term in the first bracket is the shock, d , due to unforeseeable events after a plant 

observes the output/growth rate in the previous year, which we capture by the residual 

term from (4); 1 1[ ] [ ]it t it it t it itltvs E ltvs gtvs E gtvs υ− −− = − = . We can rewrite the term in the 

second bracket as; 

, 1 1

1 1 1

1 1

1

[ ] [ ]
[ ] ( [ ])
[ ] [ ]

[ ].

t i t t it

it t it it t t

it t it t t

it t it

E ltvs E ltvs
ltvs E gtvs ltvs E gtvs
gtvs E gtvs E gtvs
v E gtvs

+ −

+ − −

+ −

+

−

= + − +
= + −
= +

 

In the steady state, the growth rate is increasing in iβ and iρ .10 We include both measures 

separately when we estimate (1) and (2).11 

Using the measures we described above, we estimate probit (1) and tobit (2) 

models for temp share based on each of the above specification for output levels. Note 

that while we have only annual series of the TVS to estimate these above models, the 

PCU provides a plant’s information of 4th quarter including the 4th quarter TVS. Using 

such information, we capture shock to the 4th quarter output as a deviation of the 

annualized 4th quarter output from the expected annual output from the ASM-CM panel; 

4ln(4 ) [ ]it it Q itd tvs E ltvs≡ −i . This may be more closely related to the temporary 

employment share reported for the 4th quarter of a given year.  

                                                           
10 In this specification, iβ is time invariant component of growth rate specific to a plant and iρ reflect the 

correlation among growth rates across time. Given iρ , iβ  corresponds to iβ in (3) in the sense that both 
summarize the time invariant relative difference in average growth across plants. If we ignore the random 

component in (4), the steady state growth rate is 
1
i

i

β
ρ

+
−

tA γ
, where tA is the vector of age and macro 

economic variables. A greater iρ is associated with a greater steady state growth rate.  
 
11 Age and macro economic variables also influence the growth rate. Age variables are controlled for in (1) 
and (2), and the macro economic variable is the same across plant for a given year. A dummy variable for a 
survey year is included. 
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 Applying each model to our ASM-CM panel, d is almost symmetrically 

distributed between -1 to 1 for most plants. We exclude plants for which d  is below -1 or 

above 1, considering them as outliers. Our measure of uncertainty, σ , is distributed 

between 0 to 1 except for some outliers, which are again excluded. 

 

5. Results 

Table 1 shows the results. Note that while our simple model does not provide any 

implication on the relationship between a plant’s temporary worker share and its size, 

other considerations suggest that the scale of plant’s operation may influence its tendency 

to employ temps.  Thus, we perform probit and tobit analyses with and without 

controlling for plant size (log. annualized 4th quarter output). The qualitative results for 

our key variables are the same in either case. Table 1 shows the results where we control 

for plant size. 

 In both the probit and tobit analyses, d and σ  are estimated to have positive 

coefficients, and the coefficients are statistically significant in most specifications. To 

help interpret the results, note that based on Columns 1 to 3 of the Table 1a for plants 

with average characteristics, a positive 50% deviation of realized output from expected 

levels implies a 4 to 8 percentage point increase in a plant’s probability of employing 

temporary workers. In the tobit results, a plant with an initial temp share of 10% that has 

a positive 50% deviation of realized output from expected output can be expected to 

experience an increase in temp share to between 15% to 20%. Apart from the effect of d , 

a greater average magnitude of uncertainty further increases the likelihood for a plant to 

employ temporary workers. A plant that has 50% higher uncertainty than the average 

plant is predicted to have a probability of using temps that is .035 to .086 greater than the 

average plant. For a plant with an initial temp share of 10%, the share increases to 17% to 

23%. 

 Next we add the interaction term between d  and σ (see Column 4 to 6). The 

coefficients are not significant except for the Model 2 in the probit analysis (Colum 5 in 

Table 1a). For a given d  in a particular year, plants with higher average uncertainty are 

much more likely to use temporary workers than plants with lower average uncertainty. 
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Here we provide an explanation. As compared to plants with low average uncertainty, 

plants with high average uncertainty may be more likely to consider a given shock as 

temporary and not persistent.  Thus, they may tend to adjust labor by the number of 

temporary workers rather than permanent workers in response to the shock. 

 In Columns 7 and 8, we explore how expected output growth is associated with a 

plant’s use of temporary workers. In both Models 2 and 3, the results indicate that greater 

expected output growth is associated with greater use of temporary workers. This may be 

counter intuitive. One may consider that the greater expected growth reduces the 

probability of firing permanent workers in future, which in turn decreases a plant’s use of 

temporary workers. However, the results from both probit and tobit analyses do not seem 

to be consistent with this view. Note, however, that our finding may be consistent with 

the idea that when the economy starts to recover, we tend to observe the increase in 

temporary workers prior to that of permanent workers. A common explanation for this is 

that plants wait till they are certain about the recovery for hiring permanent workers. 

While we include a measure of average uncertainty in our models, a more elaborate 

measure of uncertainty that changes over time may be necessary to capture the possibility 

that uncertainty is particularly high when expected output growth is high. It is also 

possible that our measure of average growth may be capturing growth at too short-run of 

a horizon.   

 Finally, we would like to note that some industry dummies obtain significant 

coefficients. In addition to the effect of output fluctuations, there are various factors such 

as unionization rate, seasonality, etc that would influence a plant’s temporary worker 

share. The industry dummies might be reflecting such factors. 
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Table 1 

a. Probit Analyses: dF/dX 
 (1) (2) (3) (4) (5) (6) (7) (8) 
 Model1 Model 2 Model 3 Model1 Model 2 Model 3 Model 2 Model 3 

d  0.158*** 0.083*** 0.100*** 0.141*** 0.015 0.087** 0.057 0.097** 
 [8.70] [4.27] [4.82] [3.64] [0.34] [2.06] [1.29] [2.28] 
σ  0.070* 0.172*** 0.097* 0.059 0.191*** 0.099* 0.121** 0.114* 
 [1.81] [3.29] [1.66] [1.33] [3.53] [1.68] [2.20] [1.89] 

dσ ×     0.035 0.193* 0.042 0.239** 0.076 
    [0.50] [1.70] [0.34] [2.09] [0.61] 
β        1.044*** 0.916*** 
       [7.33] [7.78] 
ρ         0.066*** 
        [2.68] 
Log. Annualized 4th Q. TVS 0.014** 0.038*** 0.037*** 0.014** 0.038*** 0.037*** 0.020*** 0.023*** 
 [1.97] [5.89] [5.67] [1.96] [5.96] [5.68] [2.90] [3.45] 
Age variables Yes Yes Yes Yes Yes Yes Yes Yes 
2-digit SIC dummies Yes Yes Yes Yes Yes Yes Yes Yes 
Year dummy Yes Yes Yes Yes Yes Yes Yes Yes 
N. of obs in ASM-CM panel Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 5431 5431 5431 5431 5431 5431 5431 5431 
Robust z statistics in brackets       
* significant at 10%; ** significant at 5%; *** significant at 1%     

 
b. Tobit Analyses: 

 (1) (2) (3) (4) (5) (6) (7) (8) 
 Model1 Model 2 Model 3 Model1 Model 2 Model 3 Model 2 Model 3 

d  1.683*** 0.912*** 1.079*** 1.651*** 0.316 1.087** 0.765* 1.194*** 
 [9.01] [4.63] [5.11] [4.19] [0.72] [2.57] [1.74] [2.85] 
σ  0.800** 1.998*** 1.385** 0.778* 2.125*** 1.384** 1.362** 1.494** 
 [2.05] [3.76] [2.33] [1.70] [3.95] [2.33] [2.50] [2.51] 

dσ ×     0.065 1.668 -0.026 2.116* 0.348 
    [0.09] [1.52] [0.02] [1.93] [0.30] 
β        10.809*** 9.709*** 
       [7.73] [8.42] 
ρ         0.665*** 
        [2.62] 
Log. Annualized 4th Q. TVS 0.098 0.366*** 0.358*** 0.098 0.371*** 0.358*** 0.171** 0.202*** 
 [1.37] [5.46] [5.30] [1.37] [5.52] [5.30] [2.39] [2.91] 
Age variables Yes Yes Yes Yes Yes Yes Yes Yes 
2-digit SIC dummies Yes Yes Yes Yes Yes Yes Yes Yes 
Year dummy Yes Yes Yes Yes Yes Yes Yes Yes 
N. of obs in ASM-CM panel Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 5431 5431 5431 5431 5431 5431 5431 5431 
Robust z statistics in brackets       
* significant at 10%; ** significant at 5%; *** significant at 1%     
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Figure 1: Determination of the cap on perm workers: Two period and infinite 
horizon i.i.d. models 
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Appendix 

A.1 Our sample based on the PCU data 

In the questionnaire, for each shift, plants are asked to report the total number of 

production workers, temporary production workers, total hours worked by production 

workers, hours worked by temporary workers, and over time hours (See Item 3 in the 

questionnaire). We consider that a plant operates a given shift if it reports positive total 

production workers for the shift, which are defined to include temporary workers in the 

instruction of the questionnaire given to the plant. Among plants operating a particular 

shift, however, many left the information on temporary production workers unfilled, and 

often, such plants do not provide the temporary worker number for any shifts. In such a 

case, it is not clear whether the plant did not use temporary workers or did not fill out the 

item. Since the instruction for the PCU survey explicitly tells them (with several 

examples) to write zero when the plants operate a given shift but do not use temporary 

workers, we consider that they did not fill out the item. We exclude plants with missing 

temporary employment for any of their active shifts (i.e. shifts for which the plant reports 

positive total number of production workers).  

In addition, by definition given in the instruction, when a given shift exists, the 

total number of production workers should be greater or equal to the number of 

temporary workers. We exclude plants with any inconsistency regarding these figures. 

We also exclude a few plants reporting the same number for both total and temporary 

workers for some shifts. It is possible that these shifts are actually supported by only 

temporary workers. However, such incidents are rare and we cannot tell whether these 

are miss data entry.  
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 Once we clean the PCU data, we limit the sample to those for which we can 

estimate d  and σ  based on ASM-CM sample as discussed above. Among models we 

discussed in Section 3, Model 3 put more restriction to our sample.  In Model 3, for a 

plant to be included in estimation, the plant has to appear in consecutive 3-years at least 

once in ASM-CM panel. However, plants with only one or two consecutive 3-year 

observations typically become outliers in terms of the estimated values for d  and σ . 

Thus we limit our sample to plants that appear 3 year consecutively at least three times. 

We then match these plants with the cleaned PCU sample and use the observations of the 

plants for which we have the estimates our key variables. Some further outliers are 

excluded. 

 

 

 

 

 

 

 

 

 

 

 


